skip to main content


Search for: All records

Creators/Authors contains: "Ning, Huan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Urban greenway is an emerging form of urban landscape offering multifaceted benefits to public health, economy, and ecology. However, the usage and user experiences of greenways are often challenging to measure because it is costly to survey such large areas. Based on the online postings from Instagram in 2017, this paper used Computer Vision (CV) technology to analyze and compare how the general public uses two typical greenway parks, The High Line in New York City and the Atlanta Beltline in Atlanta. Face and object detection analysis were conducted to infer user composition, activities, and key experiences. We presented the temporal patterns of Instagram postings as well as the group gatherings, smiling, and representative objects detected from photos. Our results have shown high user engagement levels for both parks while teens are significantly underrepresented. The High Line had more group activities and was more active during weekdays than the Atlanta Beltline. Stronger sense of escape and physical activities can be found in Atlanta Beltline. In summary, social media images like Instagram can provide strong empirical evidence for urban greenway usage when combined with artificial intelligence technologies, which can support the future practice of landscape architecture and urban design. 
    more » « less
  2. Abstract Shaped by human movement, place connectivity is quantified by the strength of spatial interactions among locations. For decades, spatial scientists have researched place connectivity, applications, and metrics. The growing popularity of social media provides a new data stream where spatial social interaction measures are largely devoid of privacy issues, easily assessable, and harmonized. In this study, we introduced a global multi-scale place connectivity index (PCI) based on spatial interactions among places revealed by geotagged tweets as a spatiotemporal-continuous and easy-to-implement measurement. The multi-scale PCI, demonstrated at the US county level, exhibits a strong positive association with SafeGraph population movement records (10% penetration in the US population) and Facebook’s social connectedness index (SCI), a popular connectivity index based on social networks. We found that PCI has a strong boundary effect and that it generally follows the distance decay, although this force is weaker in more urbanized counties with a denser population. Our investigation further suggests that PCI has great potential in addressing real-world problems that require place connectivity knowledge, exemplified with two applications: (1) modeling the spatial spread of COVID-19 during the early stage of the pandemic and (2) modeling hurricane evacuation destination choice. The methodological and contextual knowledge of PCI, together with the open-sourced PCI datasets at various geographic levels, are expected to support research fields requiring knowledge in human spatial interactions. 
    more » « less
  3. Introduction Widespread problems of psychological distress have been observed in many countries following the outbreak of COVID-19, including Australia. What is lacking from current scholarship is a national-scale assessment that tracks the shifts in mental health during the pandemic timeline and across geographic contexts. Methods Drawing on 244 406 geotagged tweets in Australia from 1 January 2020 to 31 May 2021, we employed machine learning and spatial mapping techniques to classify, measure and map changes in the Australian public’s mental health signals, and track their change across the different phases of the pandemic in eight Australian capital cities. Results Australians’ mental health signals, quantified by sentiment scores, have a shift from pessimistic (early pandemic) to optimistic (middle pandemic), reflected by a 174.1% (95% CI 154.8 to 194.5) increase in sentiment scores. However, the signals progressively recessed towards a more pessimistic outlook (later pandemic) with a decrease in sentiment scores by 48.8% (95% CI 34.7 to 64.9). Such changes in mental health signals vary across capital cities. Conclusion We set out a novel empirical framework using social media to systematically classify, measure, map and track the mental health of a nation. Our approach is designed in a manner that can readily be augmented into an ongoing monitoring capacity and extended to other nations. Tracking locales where people are displaying elevated levels of pessimistic mental health signals provide important information for the smart deployment of finite mental health services. This is especially critical in a time of crisis during which resources are stretched beyond normal bounds. 
    more » « less
  4. Yang, Chaowei (Ed.)
    In response to the soaring needs of human mobility data, especially during disaster events such as the COVID-19 pandemic, and the associated big data challenges, we develop a scalable online platform for extracting, analyzing, and sharing multi-source multi-scale human mobility flows. Within the platform, an origin-destination-time (ODT) data model is proposed to work with scalable query engines to handle heterogenous mobility data in large volumes with extensive spatial coverage, which allows for efficient extraction, query, and aggregation of billion-level origin-destination (OD) flows in parallel at the server-side. An interactive spatial web portal, ODT Flow Explorer, is developed to allow users to explore multi-source mobility datasets with user-defined spatiotemporal scales. To promote reproducibility and replicability, we further develop ODT Flow REST APIs that provide researchers with the flexibility to access the data programmatically via workflows, codes, and programs. Demonstrations are provided to illustrate the potential of the APIs integrating with scientific workflows and with the Jupyter Notebook environment. We believe the platform coupled with the derived multi-scale mobility data can assist human mobility monitoring and analysis during disaster events such as the ongoing COVID-19 pandemic and benefit both scientific communities and the general public in understanding human mobility dynamics. 
    more » « less
  5. Flood mitigation governance is critical for coastal regions where flooding has caused considerable damage. Raising the First-Floor Elevation (FFE) above the base flood elevation (BFE) is an effective mitigation measure for buildings with a high risk of flooding. In the U.S., measuring FFE is necessary to obtain an Elevation Certificate (E.C.) for the National Flood Insurance Program (NFIP) and has traditionally required labor-consuming field surveys. However, the advances in computer vision technology have facilitated the handling of large image datasets, leading to new FFE measurement approaches. Taking Galveston Island (including the cities of Galveston and Jamaica Beach) in Coastal Texas as a case study, we explore how these new approaches may inform flood risk management and governance, including how FFE estimates may be combined with BFE estimates from flood inundation probability mapping to model the predicted cost of raising buildings’ FFE above their BFE. After establishing the FFE model’s accuracy by comparing its results with previously validated FFE estimates in three districts of Galveston, we generalize the workflow to building footprints across Galveston Island. By combining the FFE data derived from our workflow with multidimensional building information, we further analyze the future flood control and post-disaster maintenance strategies. Our findings present valuable data collection paradigms and methodological concepts that inform flood governance for Galveston Island. The proposed workflow can be extended to flood management and research for other vulnerable coastal communities.

     
    more » « less
  6. A reliable, punctual, and spatially accurate dataset of sidewalks is vital for identifying where improvements can be made upon urban environment to enhance multi-modal accessibility, social cohesion, and residents' physical activity. This paper develops a synthetically new spatial procedure to extract the sidewalk by integrating the detected results from aerial and street view imagery. We first train neural networks to extract sidewalks from aerial images, and then use pre-trained models to restore occluded and missing sidewalks from street view images. By combining the results from both data sources, a complete network of sidewalks can be produced. Our case study includes four counties in the U.S., and both precision and recall reach about 0.9. The street view imagery helps restore the occluded sidewalks and largely enhances the sidewalk network's connectivity by linking 20% of dangles.

     
    more » « less